4.6 Exercises

Write a complete Python program to solve each of the following problems.
4.1. Write a program with a function $\operatorname{next}(\mathrm{n})$ that returns the number after n (i.e, it returns $n+1$). Give your program the following main() function:

```
def main():
    print(next(35))
    print(next( next(23) ))
```

Your program should print the value 36 , then 25 .
4.2. A perfect number is one whose factors (including 1 but not the number) sum to the number itself. For example, the factors of 6 are 1, 2, and 3, which sum to 6 . The factors of 28 are $1,2,4,7$, which sum to 28 . The factors of 24 , however, are $1,2,3,4,6,8$, and 12 ; these sum to 36 , so 24 is not perfect. Write a function isPerfect (x) that returns True if x is a perfect number, then incorporate this in a program that finds all of the perfect numbers less than 10,000 .
4.3. Write a function printTime(minutes) that inputs a number of minutes and prints this in terms of hours and minutes. For example, printTime(325) should print " 6 hours and 25 minutes."
4.4. Write a program with area functions for squares, circles and rectangles. You might call these functions AreaSquare(side), AreaCircle (radius) and AreaRectangle(length, width). If you call these functions within the main() function:

```
def main():
    print( AreaSquare(4) )
    print( AreaCircle(10) )
    print( AreaRectangle(6, 7) )
```

the program should print 16 , then 314.16, then 42
4.5. Write a function decade(year) that takes as argument a year and returns the start of the decade containing this year. For example, for argument 1968 the function should return 1960; for 1999 it should return 1900, and so forth. There are several ways to do this: you can either use the \% operator ($1968 \% 10$ is 8 , so $1968-(1968 \% 10)$ is 1960$)$ or you can have a loop that counts down by 10 's from some upper limit (say 3000), and stops when it gets a decade smaller than or equal to the year. Alternatively, you could count down from the year you start, looking for a year that is divisible by 10 .
Once you have function decade(year) written you can add the following main() function:

```
def main ():
    \(y=1\)
    while \(\mathrm{y}!=0\) :
        y = eval(input( "Enter a year, 0 to exit: " ))
        if y \(!=0\) :
            print ("\%d was part of the \%d's" \%(y, decade(y)))
```

On an input like 1968 the program will print "1968 was part of the 1960's." Of course, for the 1960's it should add "Now that was a groovy decade."
4.6. Write a function deleteB(string) that removes all the instances of the letter "b" from a string and returns the result. Here are two hints. First, you can use a for-loop to run through the letters of a string:

```
for letter in "blah":
    print( letter )
```

will print first "b", then "l", then "a", then "h". Second, you can use concatenation to build up strings. Start variable result as the empty string:

$$
\text { result }=" "
$$

Then use the +-operator to add letters onto result. For example, you can copy a string with

```
result = ""
for letter in "blah":
        result = result + letter
```

Finally, give your program a main() function to test this out:

```
def main():
    print( deleteB("bob is a blob") )
```

will print "o is a lo", a far nicer string.

